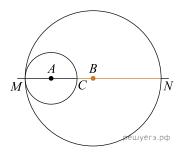
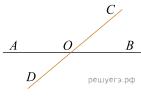

Централизованное тестирование по математике, 2018

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


1. На координатной прямой отмечены точки A, B, C, D, E. Если расстояние между E и C равно $\frac{2}{5}$, то ближе других к точке с координатой 1,01 расположена точка:

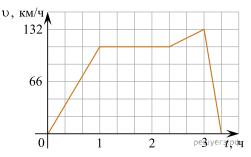
2. В треугольнике *ABC* известно, что $\angle A = 70^\circ$, $\angle B = 40^\circ$. Укажите номер верного утверждения для сторон треугольника.


1)
$$AB < BC < AC$$
 2) $BC < AB < AC$ 3) $AB > BC > AC$
4) $AB > AC > BC$ 5) $AB = BC > AC$

3. Две окружности с центрами A и B касаются в точке M. Найдите длину отрезка CN, если AC=6 и диаметр большей окружности на 20 больше радиуса меньшей окружности.

1) 10 2) 14 3) 20 4) 34 5) 40

4. На рисунке две прямые пересекаются в точке O. Если $\angle AOD + \angle AOC + \angle BOD = 290^\circ$, то угол AOD равен:



1) 110° 2) 80° 3) 30° 4) 60° 5) 70°

5. Укажите номер выражения, являющегося одночленом восьмой степени:

а)
$$a^2b^7c^{-1}$$
 6) $ab^2x^{0.5}y^2x^{1.5}$ В) $\frac{a^4b^3}{8c^{-1}}$ г) $\frac{ax(xy^2)^2}{\sqrt{5}}$ д) $8x^8y$ 1) а 2) 6 3) в 4) г 5) д

6. На рисунке приведен график изменения скорости тела в зависимости от времени. Запишите закон движения тела на промежутке от 60 мин до 120 мин.

- 1) S = 110
- 2) S = 99t5) S = 60t
- 4) S = 111t

- 7. Вычислите $\log_{\frac{1}{6}} \sqrt{\log_{\sqrt{2}} 8}$.
 - 1) 1
- 2)0,5
- 3) 0 4) -0.5

3) S = 110t

5) -1

8. Последовательность задана формулой n-го члена $a_n = 3n - 164$. При каком значении n впервые выполняется условие $S_n > 0$, где S_n — сумма первых п членов этой последовательности?

- 1) 54
- 2) 55
- 3) 108
- 4) 109
- 5) 110

9. Решением системы неравенств $\begin{cases} x(x+10)+25>0,\\ 29\leqslant \frac{1-x}{0.1}<\frac{7,3}{0.1} \end{cases}$ является:

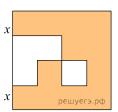
- 1) [1,9; 6,3) 2) (-5; -1,9) 3) (-6,3; -1,9] 4) $[-6,3; -5) \cup (-1,9; +\infty)$ 5) $(-6,3; -5) \cup (-5; -1,9]$

10. Значение выражения $\sqrt[4]{9(\sqrt{3}-2)^4}$ равно:

- 1) $3\sqrt{3}-6$ 2) $3-2\sqrt{3}$ 3) $2\sqrt{3}-6$ 4) $6-2\sqrt{3}$ 5) $2\sqrt{3}-3$

11. Укажите уравнение, равносильное уравнению $\log_x 3 = 2$.

- 1) $x^2 = 3$
- 2) $3^x = 2$ 3) $\cos \frac{\pi}{6} = \frac{x}{2}$ 4) $\sqrt{x} = 3$ 5) $2^x = 3$


12. Площадь параллелограмма равна $2\sqrt{5}$, его стороны равны 6 и 1. Найдите большую диагональ параллелограмма.

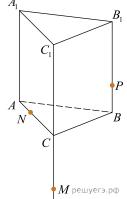
- 1) 45 2) 15 3) $3\sqrt{5}$ 4) $\sqrt{29}$ 5) $\frac{5\sqrt{5}}{3}$

13. Найдите значение выражения $\arctan\left(\operatorname{tg}\frac{4\pi}{5}\right)-\frac{4\pi}{5}$.

- 2) $-\pi$ 3) $\frac{4\pi}{5}$ 4) $-\frac{\pi}{5}$ 5) $\frac{3\pi}{5}$

14. На сторонах квадрата площадью 36 отметили отрезки длиной х. Составьте выражение для определения площади заштрихованной фигуры.

- 1) 36-4x 2) $36-4x^2$ 3) $36-4(3-x)^2$ 4) $36-4(6-2x)^2$ 5) $36-4(6-x)^2$


- **15.** Окружность задана уравнением $x^2 + 4x + 4 + y^2 = a + 4$ и проходит через вершину параболы $y = 8 - (4 - x)^2$. Найдите радиус этой окружности.
 - 1) $\sqrt{10}$
- 2) $\sqrt{104}$ 3) 10
- 4) 5
- 16. Площадь боковой поверхности цилиндра равна 24 п, а его объем равен 36 л. Найдите высоту цилиндра.
 - 1) 2
- 2) 4
- 3)8
- 5) 24

5) $\sqrt{96}$

- 17. Найдите сумму корней уравнения $\cos\left(5\pi x \frac{\pi}{4}\right) = \sin\frac{\pi}{3}$, принадлежащих промежутку [-1; 1].
- 2)0,1
- 3) 0,4
- 4)0,5

4) 16

- 5) 2,1
- 18. В правильной треугольной призме ребра основания равны 16, а высота равна 9. Найдите площадь призмы плоскостью MNP, $CM : C_1M = 1 : 2, PB : PB_1 =$ = 1:2, AN:AC = 1:4.

- 1) $32\sqrt{21}$
- 2) $8\sqrt{161}$
- 3) 38
- 4) 42
- 19. Выберите все верные утверждения, являющиеся свойствами нечетной функции f(x), определённой на $x \in (-\infty; \infty)$ и заданной формулой $f(x) = 10x - x^2 \text{ при } x \geqslant 0.$
 - 1. Функция имеет три нуля.
 - 2. Функция убывает на промежутке [-8; -6].
 - 3. Минимум функции равен -25.
 - 4. Максимальное значение функции равно 25.
 - 5. f(f(-1)-1)=0.
 - 6. Функция принимает отрицательные значения при $x \in [-12; -10]$.
 - 7. График функции симметричен относительно оси абсцисс.

Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 123.

- 20. Внешний угол правильного многоугольника равен 45°. Выберите все верные утверждения для данного многоугольника.
 - 1. Многоугольник является восьмиугольником.
 - 2. Сумма всех внутренних углов составляет 1080°.
- 3. Если сторона многоугольника равна 2, то радиус вписанной окружности равен $2+\sqrt{2}$.
- 4. Площадь многоугольника можно вычислить по формуле $S = 2\sqrt{2}R^2$, где R — радиус описанной окружности.

Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 123.

- **21.** Цену товара увеличили на 30%, а через неделю уменьшили на p%. В результате первоначальная цена товара увеличилась на 17%. Найдите значение p.
- 22. Найдите произведение корней (корень, если он единственный) уравнения $(x+1)\sqrt{x^2+3x-2}=(x+1)(10-2x).$

- **23.** Найдите сумму всех натуральных чисел a, для которых выполняется равенство $\mathrm{HOД}(18,2a)=a$.
- **24.** Найдите произведение наименьшего решения на количество решений уравнения $|x^2 3\sqrt{x^2} 1| = 3$.
- **25.** Найдите количество целых решений неравенства $\frac{(2\sqrt{6}-5)(x^2-30)x^4}{|x|-3\sqrt{2}}\geqslant 0.$
- **26.** Найдите сумму целых решений неравенства $\log_{\frac{1}{2}}\log_{2}\frac{x-1}{15-x}\geqslant\log_{\frac{1}{3}}\left(tg\frac{\pi}{4}\right).$
- **27.** Если x_1 и x_2 корни уравнения $2,5\cdot 2^{x+1}=80+6^x-16\cdot 3^x,$ то значение $3^{x_1+x_2}$ равно
- **28.** В остроугольном треугольнике *ABC* проведены высоты *BE* и *CD*. Найдите длину *CB*, если ED=16 и радиус окружности, описанной вокруг *AED* равен 17. Укажите в ответе величину 15*CB*.
- **29.** Двое рабочих выполняют некоторую работу. Сначала первый работал $\frac{1}{3}$ часть времени, за которое второй выполняет всю работу. Затем второй работал $\frac{1}{3}$ часть времени, за которое первый закончил бы оставшуюся работу. Оба они выполнили только $\frac{7}{12}$ всей работы. Сколько часов потребуется рабочему с большей производительностью для выполнения этой работы, если известно, что при совместной работе они сделают ее за 4 ч?
- **30.** На стороне *BC* прямоугольника *ABCD* отмечена точка *O* так, что OB:CB=3:5. Из точки *O* восстановлен перпендикуляр *SO* к плоскости прямоугольника. Найдите объем пирамиды *ABCDS*, если известно, что $\cos\alpha=-\frac{\sqrt{5}}{13}$, где α линейный угол двугранного угла *BSAD*, CD=5, AD=10.